Mo
O
Z
>

MySQL Indexing

Best Practices

Peter Zaitsev, CEO

Percona Inc
August 15, 2012

You’ve Made a Great Choice !

Understanding indexing is crucial both for
Developers and DBAs

Poor index choices are responsible for large
oortion of production problems

ndexing is not a rocket science

MySQL Indexing: Agenda

S

Understanding Indexing
Setting up best indexes for your applications
Working around common MySQL limitations

lE _ONA

v,
e
<=
nile

Indexing in the Nutshell

What are indexes for ?

Speed up access in the database

Help to enforce constraints (UNIQUE, FOREIGN
KEY)

Queries can be ran without any indexes

But it can take a really long time

i

Types of Indexes you might heard about

BTREE Indexes
Majority of indexes you deal in MySQL is this type

RTREE Indexes
MyISAM only, for GIS

HASH Indexes
MEMORY, NDB

BITMAP Indexes
Not Supported by MySQL

FULLTEXT Indexes
MyISAM, Innodb planned in MySQL 5.6

Family of BTREE like Indexes

A lot of different implementations

Share same properties in what operations they can
speed up

Memory vs Disk is life changer
B+ Trees are typically used for Disk storage

Data stored in leaf nodes

B+Tree Example

Less than 3

dy d, ds dl4 cll5 dls dl7 \

Data Pointers Leaf Node

PERCONA
LIVE

Indexes in MyISAM vs Innodb

In MyISAM data pointers point to physical
offset in the data file
All indexes are essentially equivalent

In Innodb

PRIMARY KEY (Explicit or Implicit) - stores data in
the leaf pages of the index, not pointer

Secondary Indexes — store primary key as data
pointer

DPERCONA
LIVE

What Operations can BTREE Index do ?

e x = ‘

-ind all rows with KEY=5 (point lookup)
~ind all rows with KEY>5 (open range)

-ind all rows with 5<KEY<10 (closed range)

NOT find all rows with last digit of the KEY is
Zero

This can’t be defined as a “range” operation

String Indexes

There is no difference... really
Sort order is defined for strings (collation)
“AAAA” < “AAAB”
Prefix LIKE is a special type of Range

LIKE “ABC%” means
“ABC[LOWEST]”<KEY<“ABC[HIGHEST]”

LIKE “%ABC” can’t be optimized by use of the
index

O
l
B —

e
<=
mo

Multiple Column Indexes

Sort Order is defined, comparing leading
column, then second etc

KEY(col1,col2,col3)
(1,2,3) <(1,3,1)

It is still one BTREE Index; not a separate BTREE
index for each level

\
I

Overhead of The Indexing

Indexes are costly; Do not add more than you
heed

In most cases extending index is better than
adding new one

Writes - Updating indexes is often major cost
of database writes

Reads - Wasted space on disk and in memory;
additional overhead during query optimization

Impact on Cost of Indexing

Long PRIMARY KEY for Innodb
Make all Secondary keys longer and slower
“Random” PRIMARY KEY for Innodb
Insertion causes a lot of page splits
Longer indexes are generally slower
Index with insertion in random order
SHA1(‘password’)
Low selectivity index cheap for insert
Index on gender

Correlated indexes are less expensive
insert_time is correlated with auto_increment id

Indexing Innodb Tables

Data is clustered by Primary Key
Pick PRIMARY KEY what suites you best

For comments — (POST_ID,COMMENT _ID) can be
good PRIMARY KEY storing all comments for single
post close together

Alternatively “pack” to single BIGINT

PRIMARY KEY is implicitly appended to all indexes
KEY (A) is really KEY (A,ID) internally
Useful for sorting, Covering Index.

How MySQL Uses Indexes

™

Data Lookups

Sorting
Avoiding reading “data”

Special Optimizations

DPERCONA
LIVE

——— I ——

Using Indexes for Data Lookups

SELECT * FROM EMPLOYEES WHERE
LAST _NAME=“Smith”

The classical use of index on (LAST_NAME)

Can use Multiple column indexes

SELECT * FROM EMPLOYEES WHERE
LAST _NAME=“Smith” AND DEPT=“Accounting”

Will use index on (DEPT,LAST_NAME)

It Gets Tricky With Multiple Columns

Index (A,B,C) - order of columns matters

Will use Index for lookup (all listed keyparts)
A>5
A=5 AND B>6
A=5 AND B=6 AND C=7
A=5 AND B IN (2,3) AND C>5
Will NOT use Index

B>5 — Leading column is not referenced
B=6 AND C=7 - Leading column is not referenced

Will use Part of the index
A>5 AND B=2 - range on first column; only use this key part
A=5 AND B>6 AND C=2 - range on second column, use 2 parts

The First Rule of MySQL Optimizer

MySQL will stop using key parts in multi part
index as soon as it met the real range (<,>,
BETWEEN), it however is able to continue
using key parts further to the right if IN(...)
range is used

Using Index for Sorting

SELECT * FROM PLAYERS ORDER BY SCORE
DESC LIMIT 10

Will use index on SCORE column

Without index MySQL will do “filesort” (external
sort) which is very expensive

Often Combined with using Index for lookup

SELECT * FROM PLAYERS WHERE COUNTRY=“US"
ORDER BY SCORE DESC LIMIT 10

Best served by Index on (COUNTRY,SCORE)

Multi Column indexes for efficient sorting

It becomes even more restricted!

KEY(A,B)
Will use Index for Sorting
ORDER BY A - sorting by leading column

A=5 ORDER BY B - EQ filtering by 1%t and sorting by 2nd
ORDER BY A DESC, B DESC - Sorting by 2 columns in same order
A>5 ORDER BY A - Range on the column, sorting on the same

Will NOT use Index for Sorting
ORDER BY B - Sorting by second column in the index
A>5 ORDER BY B — Range on first column, sorting by second
A IN(1,2) ORDER BY B - In-Range on first column
ORDER BY A ASC, B DESC - Sorting in the different order

OPERCONA
LIVE

MySQL Using Index for Sorting Rules

You can’t sort in different order by 2 columns

You can only have Equality comparison (=) for
columns which are not part of ORDER BY

Not even IN() works in this case

Avoiding Reading The data

“Covering Index”

Applies to index use for specific query, not type of
index.

Reading Index ONLY and not accessing the “data”

SELECT STATUS FROM ORDERS WHERE
CUSTOMER_ID=123

KEY(CUSTOMER_ID,STATUS)
Index is typically smaller than data

Access is a lot more sequential
Access through data pointers is often quite “random”

OPERCONA
LIVE
B

Min/Max Optimizations

Index help MIN()/MAX() aggregate functions
But only these

SELECT MAX(ID) FROM TBL;

SELECT MAX(SALARY) FROM EMPLOYEE
GROUP BY DEPT_ID
Will benefit from (DEPT_ID,SALARY) index

“Using index for group-by”

Indexes and Joins

MySQL Performs Joins as “Nested Loops”

SELECT * FROM POSTS,COMMENTS WHERE
AUTHOR=“Peter” AND COMMENTS.POST_ID=POSTS.ID

Scan table POSTS finding all posts which have Peter as an Author
For every such post go to COMMENTS table to fetch all comments

Very important to have all JOINs Indexed

Index is only needed on table which is being looked up

The index on POSTS.ID is not needed for this query
performance

Re-Design JOIN queries which can’t be well indexed

OPERCONA
LIVE

Using Multiple Indexes for the table

MySQL Can use More than one index

“Index Merge”
SELECT * FROM TBL WHERE A=5 AND B=6

Can often use Indexes on (A) and (B) separately
Index on (A,B) is much better

SELECT * FROM TBL WHERE A=5 OR B=6

2 separate indexes is as good as it gets
Index (A,B) can’t be used for this query

Prefix Indexes

You can build Index on the leftmost prefix of
the column

ALTER TABLE TITLE ADD KEY(TITLE(20));
Needed to index BLOB/TEXT columns
Can be significantly smaller

Can’t be used as covering index

Choosing prefix length becomes the question

Choosing Prefix Length

g x ——

Prefix should be “Selective enough”

Check number of distinct prefixes vs number of
total distinct values

mysgl> select count (distinct(title)) total,
count (distinct (left(title,10))) plO,
count (distinct (left(title,20))) p20 from title;

t—— tmm tom - +
| total | P10 | 20 |
t—m e it tom +
| 998335 | 624949 | 960894 |
t—m e it tom +

1 row in set (44.19 sec)

Choosing Prefix Length

g_-l.l.l-!'

Check for Outliers

Ensure there are not too many rows sharing the
same prefix

Most common Titles Most Common Title Prefixes

mysqgl> select count(*) cnt, title tl
from title group by tl order by cnt desc
limit 3;

mysgl> select count(*) cnt, left(title,20) tl
from title group by tl order by cnt desc

limit 3;

- +---—-— - + f—— e +
| cnt | tl | | cnt | tl |
- +---—-— - + f—— e +
| 136 | The Wedding | | 184 | Wetten, dass..? aus |
| 129 | Lost and Found | | 136 | The Wedding |
| 112 | Horror Marathon | | 129 | Lost and Found |
+t—-———- +---—-—-————————- + f—— e +
3 rows in set (27.49 sec) 3 rows in set (33.23 sec)

How MySQL Picks which Index to Use ?

Performs dynamic picking for every query
execution

The constants in query texts matter a lot

Estimates number of rows it needs to access
for given index by doing “dive” in the table

Uses “Cardinality” statistics if impossible
This is what ANALYZE TABLE updates

More on Picking the Index

Not Just minimizing number of scanned rows

Lots of other heuristics and hacks
PRIMARY Key is special for Innodb
Covering Index benefits
Full table scan is faster, all being equal
Can we also use index for Sorting

Things to know

Verify plan MySQL is actually using

Note it can change dynamically based on constants
and data

DPERCONA
LIVE

Use EXPLAIN

EXPLAIN is a great tool to see how MySQL
plans to execute the query

http://dev.mysgl.com/doc/refman/5.5/en/using-
explain.html

Remember real execution might be different

mysql xpl lect max(son) from title group by production y
———
| id | select type | table | type | possible keys | key | key len | ref | ws | Extra |
———
| 1 | SIMPLE | title | range | NULL | producti y | 5 | NULL | 201 | Using index for group-by |
———
1 w t (0.01)

http://dev.mysql.com/doc/refman/5.5/en/using-explain.html
http://dev.mysql.com/doc/refman/5.5/en/using-explain.html
http://dev.mysql.com/doc/refman/5.5/en/using-explain.html

MySQL Explain 101

Look at the “type” sorted from “good” to “bad”
system,const,eq_ref,ref,range,index,ALL

Note “rows” — higher numbers mean slower

query

Check “key_len” — shows how many parts of the

key are really used

Watch for Extra.

Using Index - Good
Using Filesort, Using Temporary - Bad

Indexing Strategy

Build indexes for set of your performance critical
gueries

Look at them together not just one by one
Best if all WHERE clause and JOIN clauses are
using indexes for lookups

At least most selective parts are

Generally extend index if you can, instead of
creating new indexes

Validate performance impact as you’re doing
changes

m
A

DP CONA
LIVE

Indexing Strategy Example

Build Index order which benefits more queries
SELECT * FROM TBL WHERE A=5 AND B=6
SELECT * FROM TBL WHERE A>5 AND B=6
KEY (B,A) Is better for such query mix

All being equal put more selective key part first

Do not add indexes for non performance
critical queries

Many indexes slow system down

Trick #1: Enumerating Ranges

KEY (A,B)

SELECT * FROM TBL WHERE A BETWEEN 2
AND 4 AND B=5

Will only use first key part of the index

SELECT * FROM TBL WHERE A IN (2,3,4) AND
B=5
Will use both key parts

Trick #2: Adding Fake Filter

KEY (GENDER,CITY)

SELECT * FROM PEOPLE WHERE CITY=“NEW
YORK”
Will not be able to use the index at all

SELECT * FROM PEOPLE WHERE GENDER IN
(“M”,”F”) AND CITY=“NEW YORK"

Will be able to use the index

The trick works best with low selectivity columns.
Gender, Status, Boolean Types etc

OPERCONA
LIVE
B

Trick #3: Unionizing Filesort

KEY(A,B)
SELECT * FROM TBL WHERE A IN (1,2) ORDER BY
B LIMIT 5;
Will not be able to use index for SORTING
(SELECT * FROM TBL WHERE A=1 ORDER BY B

LIMIT 5) UNION ALL (SELECT * FROM TBL WHERE
A=2 ORDER BY B LIMIT 5) ORDER BY B LIMIT 5;

Will use the index for Sorting. “filesort” will be needed
only to sort over 10 rows.

DPERCONA
LIVE
B -

Join us at Webinars

Full Text Search Throwdown, Aug 22"

Building High a High Availability MySQL Cluster
with Percona Replication Manager (PRM), Sep
26th

Learn More

http://www.percona.com/webinars/

http://www.percona.com/webinars/
http://www.percona.com/webinars/
http://www.percona.com/webinars/

Learn More at Percona Live MySQL Conferences

Percona Live New York,2012
October 1,2
http://www.percona.com/live/nyc-2012/
Percona Live London, 2012
December 3,4
http://www.percona.com/live/london-2012/

Percona Live MySQL Conference and Expo 2013

April 22-25, Santa Clara,CA
http://www.percona.com/live/mysqgl-conference-

2013/

DPERCONA
LIVE

http://www.percona.com/live/nyc-2012/
http://www.percona.com/live/nyc-2012/
http://www.percona.com/live/nyc-2012/
http://www.percona.com/live/nyc-2012/
http://www.percona.com/live/london-2012/
http://www.percona.com/live/london-2012/
http://www.percona.com/live/london-2012/
http://www.percona.com/live/mysql-conference-2013/
http://www.percona.com/live/mysql-conference-2013/
http://www.percona.com/live/mysql-conference-2013/
http://www.percona.com/live/mysql-conference-2013/
http://www.percona.com/live/mysql-conference-2013/

Immersive MySQL Learning with Percona Training

Phoenix,AZ August 20-23

Madrid, Spain September 2-6
Portland,OR September 10-13
Paris, France September 24-27
Salt Lake City,UT September 24-27
Houston, TX October 1-4

_Learn More:
nttp://www.percona.com/training/

http://www.percona.com/training/
http://www.percona.com/training/

Thank You !

S

pz@percona.com

http://www.percona.com

@percona at Twitter

http://www.facebook.com/Percona

o

m
<=

mo

ONA

mailto:pz@percona.com
http://www.percona.com/
http://www.facebook.com/Percona

